AN L; BASED METHOD FOR THE DESIGN OF ONE DIMENSIONATL
FIR DIGITAL FILTERS

Emmanaud 7. Psarakis

George V., Moustakides

Department of Computer Engineering and [nformatics, University of Patras, Patras 26500, GREECE
Computer Techuology Institute {CTL), P:O, Box 1122, Patras 26110, GREECE.

ADSTRACT

FIR filters obtained with the classical Ly method
have performance thal 15 very sensitive to the form
of the ideal response selected for the transition re-
gion, In this paper we propase a means for selecting
the unknown part of a complex ideal cesponse opti-
mally, Dy selecting o proper Lz criterion and using
varialional techniques we suceeed in minimizing the
criterion with respect to the ideal response and thus
obtain its corresponding optimum form, The com-
plete solution to Lhe problem can be obtained by
solving & simple system of linear equations suggest-
ing & reduced complexity for the proposed method.
Using the optimum form of the ideal response we
also propose a new suboptimal method for the de-
sign of weighted FIR flters. Design examples are
presented to dlnstrate the petformance of the pro-
posed methad.

1. INTRODUCTION

A wvery Important class of 1-T} filters is the class of
linear phese Finite Impulse Response (FIR] filters,
This class is tractable because the linear phase re-
striction converts the filter design problem into a
real approximation problem. However, the linear
phase restriction is not needed in the stopbands of
the filter. Imposing the Hmear phase requirement
only inside in the passbands of the filter inproves
significantly the approximation errar. On the other
hand the design problem becomes 1 complex ap-
proximation problem. Coemplex approximation is
also meeded for the design of lilters with nonlinear
phase such as FIR egualizers, heamformerms and
seismic migration filters.

The most commen techniques used for the design
of complex’ FIR filters nse as approximation crite-
rion the minimization of the Ly or L. measure.
The Lo cntenon s considerable more difficalt to
nse i the comples case than it is in the real one.
This is becawse in the complex case the alternation
property of the error function is not necessary for
optimality [7]. Thus the minimization of the [,
measure needs the use of sophisticated optimiza-
tion tools as iterative constrained linear program-
mung [1],[2], oriterated reweighted least squares [4],
that require o large computational effort.

The L; eriterion is the simplest eriterion and re
sults in an easily computable Fourier sevies approxi-
mation, Unfortunately this methed is known for its

poor performance that is mere proneunced at the
discontinuity pemts of the ideal response (Gibb's
phenomenon) [9],[10]. The performance of the L2
method can be improved if transition regions are in-
troduced between passbands and stopbands, Thers
wre two categories of design technigques based on
this idea, The first includes methods that define
the ideal response inside the transition region using
some arbitrary class of functions and the second
vategory considers the transition region as “don’t
care” and simply removes them from the error mea-
sure [8],[10].

In [11] a new L; method for the design of the
zera phase FIR filters was presented. Specificaly,
by minimizing a properly selected Lo measure with
respect to the Aller coefficients and with respect
to the unknown ideal response (uwsing variational
techniques [6]) optimum Lo filters were designed
that had a very good performance as compared to
the [.. measure.

In this paper we extend this idea to the complex
FIR filters. In the next section we are going to
define our optimization eriterion and present the
solutian.

2. OPTIMIZATION CRITERION AND
OPTIMUM APPROXIMATION

Let us consider a complex function [Hw) that
we like lo approximate in the [; sense using
linear combinations of the complex exponentials
™ n = Ny,..., N7 where we assume that Ny —
My is an even number (odd length filter). We can
casily prove that this problem is the same as ap-
proximating /Hw)e ™7™ with linear combinations
of the exponentials ™ n = —N ., ., N where
N=[(N—=MN}2ad T = (N, + MNa}/2. 5o for
now nn owe will nessnme that we have this caze, |f
we define the vector function

duw)=[d-_w(w) -+ dolw) +-- dnlw)]* (1)

with ¢ulw] = ™ then, it & well known that the
Fourier approximation of function 0(w) can be ex-
pressed a3 Hpfw) = ¢'hp and the optimal coeffi-
cient are given by hp =< ¢, O = where <, > de-
notes the nsual inner product of twe complex fune-
o,

Let us now proceed to the definition of the opti-
mality criterion. To this end let —7 = wy < wy <
Wi o ws el Ceoy < wpo = be any M
distinet points on the interval T = [—7 =] and let



Hw) bea complex furction defined on this interval
as follows

Flw) well ,
b ={ gfe) wer @
where N, = |—2_r-| M= [%J.H. = fwapioyy @ai—al,
Ty = (wr—1 @) and Fw) is assumed known while
() is unknown, Let us denote with & = U= 4,
T = L.'-:‘:i']":. Motice that the region & is the union
of the N, closed disjoint intervals I, where Diw)
is assumed known, while the region T is the union
of the &, open disjoint intervals T, where 0w is
assumed wnknown.

Since the part of Lhe complex Tunction 20w in-
sule the region T s not explicitly given this means
that, by varying G{w), we can have a whole class of
possible functions o).

Asin the real case [11] et us define the following
Ly criterion

EDh)=< Mg oM gl s (3

where DU/ Hi}" denote the denvatives of D and
i o trespectively, Motice that for 2 meanigful defini-
tion of the criterion £{0_h) the function £4w) must
be continuous al all end points w,, t=1,..., M.

Our goal now is Lo minimize £{0, W) with respect
to the coefficients h of the filter and with respect
ta the unknown idewl response £}, The first mini-
mizalion with respect to the coeffictents (for given
0 yiclds the well known Fourier coefficients. To
further minimize the resulting error with respect to
D we use similar variational techniques as in [11]
and we obtain the following relation for the opti-
mum tdeal response [Malw) and its corresponding
optimum filter a{w)

Do) = Hulw)+giotaiaw, w €T, t=1,...,. N
(4}
We realize from (4] that the optimum form of the
complex function inside the region 7 is 2 combina-
tion of a regular and & Lrigonometric palynomial.
To this end. let hs denate the Founer coefficients
corresponding to the oplimum complex function
Dofw), then Hofw) = @%(wihs. Define now the
vector function ¢{w) = [l w]® and the N, vectors
ai = [gie a,l,_l]r. [Lis then easy to show that we
have the following system of equations from which
we obtain onr nnknowns,

b
(2] = Aha— Y B = hu (5
=1
B (wzer Jhe + ¢ (wais)a = o2
T i ()
l.ﬁ'lhb"zl.]ho'i‘ u:l:[hlﬂl}tll = Wy
t=1, ..., Ny (7}

where the mvelved quantities in the above system
are defined as follows

hy = <@ luF>

N
A = Z{u.h,ﬁn'}

(2
B = <@ it > i)
va— = Flua-—)
v = Flonit)

and 1x{w) denotes the index function of the set ¥,
Motice that the 2N 4 1 linear aquations of (5] re-
sult from minimization of the criteron with respect
to the coefficients of the filter while the 2N; linear
equations of {6} and(7) are obtained by requiring
the optimum function O, to be continuows on the
end points of the Ny disjoint intervals 7. Notice
also that all quantities defined in (9] depend only
on known [unctions integrated over known sets and
thus can be considered given,

Concluding we obtain the complete solution te
the constrained optimization problem by selving
the set of linear equations defined by (5), (6) and
(7).

2.1. Weighted Least Squares Approxima-
tion
There are cases where we are interested in weighting
the approximation errors in the bands of interest.
This can be taken inte account by incorporating
a weighting function into the L: measure. Gen-
eralizing our result of the previous section to the
weighted Least Squares (WLS) case was nol pos-
sible, In other words it was not possiple to find a
WLS criterion which optimized with respect to the
filter coefficients and the unknown ideal response to
yield o filter with good performance. On the other
hand we are able to propese a method for design-
ing weighted filters that have excellent performance
just by properly extending the equations of the pre-
vious section to the weighted case. We like to stress
that the propesed filter in this section is not optimal
in any sense except when the weights are all equal
to unity. Thus let us assume that inside the bands
ol interest we are also given a function F(w) which
is the necessary weight, The basic idea is to use
ingside each transition region the following equation

WiwjDofw) = WielHo(w)+ g0 +aiaw
! weT T, i=1,...,. M (10}

caorresponding to (4}, Notice that in the transition
regions W{w) is not known, We just define it as
a third order polynomial (different in each interval
Ti) and such that insores the continouily of W{w)
and of its dertvative. We can show that the result-
ing Wiw] is monotone inside each transition region.
Fallowing a similar procedure as in the previons sec-
tion the linear system that pives the solution to our
problem is the following

N
[ F— Ahs — Z B = hu (11)
i=1
1'!"1:_'.' hﬁ':iw?l—'l :|h.-| + I:l'-'l["-'-"?.l—i ]‘1: = U1
E=:1% v Me (12)



Wi (e o + M we e =

L]
i ) Ny (13)
where
by = g duF >w
R o= <o 1¢" 5w
Ny
A = E <d, -er.ﬂ!-"I =
=1
H = {¢\I1ﬁ¢'t T i14]
iy = Wilen_q=)Flusor=)
Mgy = lVf»J:.‘*‘JF{'—l—'E:'i'i'

and < f. g >w denotes the weighted inner prod-
uet of the complex functions f, g defined as <
g =w= _J W) flwig™ (w)dw, Notice that all
guantitics defined in (14} can be computed since
they depend only on known functions integrated
over kKnown sets

In the next section we are going Lo apply oor
method to the design of complex FIR fillers,

3. DESIGN OF FIR DIGITAL FILTERS

Let us assume that the region & is the onion of the
passhands and stopbands of the desired filter while
the region T coincides with the union of the tran-
sition bands., Under these assumptions it is casy
to zee that the filter design problem can be consid-
ered as a special case of the general approximation
problem defined in Section 2.

Let ns now apply our method to two different fil-
ter design problems and compare it to other exist-
ing technigues. Specifically we are going to compare
our method against the min-max equiripple [7].[2]
and the dom't care region [3],[10, p. 70] methods,

Lrample 1. Let Dpp{w) be the ideal response of
& lowpass filter defined as follows

=17
Diplw)= { K 0

where wy, we, T are the desired cut-off frequencies
and the desired passband group delay of the filter.

Consider the special case wy, = 046 w, = 0.5
and 7= 4N/5 where w is normalized in [-1 1]. In
Tabla | we present the maximuin ripple £m in mag-
nitude and the maximum ripple in the passhand
group delay e, for the two methods under compari-
somn, for different values of &, We can conclude from
Table [ that our method has at least ¢53% smaller

| € [0 wy]

| € fam] 18

Let us now approximate the same ideal response
with a filter of length 249 and by using weights 10
and | in the stopbands and the passband of the fil-
ter respectively. The resalting maximum approsi-
mation errors in magnitude and passband group de-
lay are 3.80 % 107" and 0.0716 respectively, These
results compare favorably with the corresponding
min-max values 2.03 x 107" and 0.150 given in [2]
where the same design problem was considered,

Ezample 2. This example corresponds 1o  nearly
linear phase bandpass filter with the following spec-
tications

0 we [-1 —0.8
Tl —0.6 = 0.4]
Daplw)=1{ 0 jE %—D.E 0] Y {16)
e e [0.2 0.8
o) 1 in passbands
Wil = { 0 in stobands (17}

By approximating the above ideal response with a
filter of length 25 the resuited maximuom approx-
matjon errors in magnitude and passband group de-
lavs are 00552 and 0.7743, These deviations com-
pare favorably with the values 0.037 and D.6858
given in [7] where the same filter was designed.
Fig.1 depicts the magnitude of the resulting op-
timum filter. Finally in Fig. 4 we plot the approx-
imated and the desired passband group delays of
the filter.
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Figure 1. Magnidute response in dB of the nearlv
linear phase bandpass filter.
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Table I, Maximum approximation errors for mag-
nitwde and passband gronp delay for the flter of

Example 1.

Figure 2. Approximated and desired passband
group delavs of the nearly linear phase bandpass
filter,



4. CONCLUSION

We liave presented a new Lo hased method for the
design of complex FIR digital fiiters. By minimiz-
ing & suitable Ly measure we were able to optimally
define the part of the ideal response that was not
explicitly specified in the design requirements. We
have also presented a suboptimal method for the
design of weighted filters. The proposed method
outperformed the “don't care” method while at the
same time compared well with the optimum min-
max approximation. The complexity of the pro-
posed method was low because it required the so-
lntion of a hnear system,
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